OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT NON INVERTING

- HIGH SPEED:
$\mathrm{f}_{\mathrm{MAX}}=250 \mathrm{MHz}$ (TYP.) at $\mathrm{V} \mathrm{Cc}=3.3 \mathrm{~V}$
- LOW POWER DISSIPATION: Icc $=8 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}), \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}(\mathrm{MAX})$
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: $\mid \mathrm{lOH}_{\mathrm{OH}}=\mathrm{lOL}=24 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS: tPLH $\cong \mathrm{tPHL}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{Cc}}(\mathrm{OPR})=4.5 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 574
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The ACT574 is an advanced high-speed CMOS OCTAL D-TYPE FLIP FLOP with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power applications mantaining high speed operation similar to equivalent Bipolar Schottky TTL.
These 8 bit D-Type flip-flops are controlled by a clock input (CK) and an output enable input (OE).

On the positive transition of the clock, the Q outputs will be set to logic state that were setup at the D inputs.
While the $(\overline{\mathrm{OE}})$ input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.
The output control does not affect the internal operation of flip flop; that is, the old data can be retained or the new data can be entered even while the outputs are off.
The device is designed to interface directly High Speed CMOS system with TTL and NMOS components.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3 State Output Enable Input (Active LOW)
$2,3,4$, $5,6,7$, 8,9	D0 to D7	Data Inputs
$12,13,14$, $15,16,17$, 18,19	Q0 to Q7	3 State Outputs
11	CLOCK	Clock Input (LOW to HIGH, edge triggered)
10	GND	Ground (OV)
20	VCC	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUTS
$\overline{\mathbf{O E}}$	$\mathbf{C K}$	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L		X	NO CHANGE
L	-	L	L
L	-	H	H

X:DON'T CARE
Z: HIGH IMPEDANCE

LOGIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	$\mathrm{DC} \mathrm{V}_{\mathrm{CC}}$ or Ground Current	± 400	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec $)$	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{l}}$	Input Voltage	0 to V_{cc}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature:	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V (note 1$)$	8	$\mathrm{~ns} / \mathrm{V}$

1) $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value					Unit
		V_{cc} (V)			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{gathered}$		2.0	1.5		2.0		V
		5.5			2.0	1.5		2.0		
VIL	Low Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{cc}}-0.1 \mathrm{~V} \end{gathered}$			1.5	0.8		0.8	V
		5.5				1.5	0.8		0.8	
VOH	High Level Output Voltage	4.5	$\begin{aligned} & V_{1}{ }^{(*)}= \\ & V_{\text {IH }} \text { or } \\ & V_{\text {IL }} \end{aligned}$	$\mathrm{l}=-50 \mu \mathrm{~A}$	4.4	4.49		4.4		V
		5.5		$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	5.4	5.49		5.4		
		4.5		$\mathrm{l}_{0}=-24 \mathrm{~mA}$	3.86			3.76		
		5.5		$\mathrm{I}_{0}=-24 \mathrm{~mA}$	4.86			4.76		
VoL	Low Level Output Voltage	4.5	$\begin{aligned} & \left.\mathrm{V}_{1}{ }^{*}\right) \\ & \mathrm{V}_{\text {IH }} \text { or } \\ & \mathrm{V}_{\text {IL }} \end{aligned}$	$\mathrm{I}_{0}=50 \mu \mathrm{~A}$		0.001	0.1		0.1	V
		5.5		$\mathrm{lo}=50 \mathrm{~mA}$		0.001	0.1		0.1	
		4.5		$\mathrm{l}=24 \mathrm{~mA}$			0.36		0.44	
		5.5		$\mathrm{l}=24 \mathrm{~mA}$			0.36		0.44	
1	Input Leakage Current	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {cC }}$ or GND				± 0.1		± 1	$\mu \mathrm{A}$
loz	3 State Output Leakage Current	5.5	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{LL}} \\ \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{gathered}$				± 0.5		± 5	$\mu \mathrm{A}$
Icct	Max Icc /Input	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}-2.1 \mathrm{~V}$			0.6			1.5	mA
Icc	Quiescent Supply Current	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or GND				8		80	$\mu \mathrm{A}$
Iold	Dynamic Output Current (note 1, 2)	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ max						75	mA
$\mathrm{I}_{\text {OHD }}$			$\mathrm{V}_{\text {OHD }}=$	3.85 V min					-75	mA

1) Maximum test duration 2 ms , one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50Ω.
${ }^{*}$) All outputs loaded.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{CL}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	Parameter	Test Condition		Value					Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
tpLH tphL	Propagation Delay Time CK to Q	$5.0{ }^{(*)}$			5.0	10.0		11.0	ns
$\begin{aligned} & \text { tpzL } \\ & \text { tpzH } \end{aligned}$	Output Enable Time	$5.0^{(*)}$			5.5	9.0		10.0	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \\ & \hline \end{aligned}$	Output Disable Time	$5.0{ }^{(*)}$			5.0	8.5		9.0	ns
tw	CK Pulse Width, HIGH or LOW	$5.0{ }^{(*)}$			1.5	3.0		4.0	ns
t_{s}	Setup Time Q to CK HIGH or LOW	$5.0{ }^{(*)}$			1.0	2.5		3.0	ns
t_{n}	Hold Time Q to CK HIGH or LOW	$5.0^{(*)}$			-1.0	2.5		3.0	ns
$\mathrm{f}_{\text {MAX }}$	Maximim Clock Frequency	$5.0^{(*)}$		100	250		85		MHz

(*) Voltage range is $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value					Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
Cout	Output Capacitance	5.0			8				pF
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	5.0			4				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0			26				pF

1) CpD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to

Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{l}_{\mathrm{Cc}}(\mathrm{opr})=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{N}}+\mathrm{I}_{\mathrm{Cd}} \mathrm{n}$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$t_{\text {PLH }, ~ t P H L ~}$	Open
$t_{\text {PZL, }} t_{\text {PLZ }}$	$2 V_{C C}$
$t_{\text {PZH }}, t_{\text {PHZ }}$	Open

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ Zout of pulse generator (typically 50Ω)
WAVEFORM 1: PROPAGATION DELAYS, SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3: PULSE WIDTH

\qquad

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4		0.335	
E		2.54			0.100	
e		22.86			0.900	
e3						
F			3.1			0.280
I		3.3			0.130	
L			1.34			0.155
Z						

P001J

SO20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45° (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S	8° (max.)					

P013L
\qquad

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringemert of patents or other rights of third parties which may results from its use. No license is granted by implication or othewise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life supportdevices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia- Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain- Sweden- Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

